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Abstract Passwords form a predominant part of all authentication mechanisms and
likely will not be replaced soon, primarily because of their ease of use and straight-
forwardness. Human-generated passwords are particularly susceptible to guessing
attacks as a consequence of the limitation of precise recall and hence are not random.
In this paper, we make use of the excellent expressive power of sequence modeling
neural networks such as LSTMs and GRUs to effectively guess passwords as com-
pared to other cutting-edge password guessing techniques like Markov models, JtR,
and PCFGs. LSTM and GRUmodels were able to match about 55% of the testing set
when evaluated on the Rockyou dataset. This proves that sequence modeling neural
networks can effectively learn the distribution of real passwords from previously
leaked datasets.

Keywords Long short-term memory · Gated recurrent unit · Generative
adversarial networks · Password guessing · John the ripper · Hashcat · Password
analysis · IWGAN

1 Introduction

Password-based authentication, even with its glaring deficiencies, shows no signs of
being replaced owing to its excellent balance of security and ease of use. Human lim-
itations to recall and password-based authentication mechanisms requiring precise
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recall lead to the selection of short [1] human-memorable passwords and their
repeated use for authentication on multiple different security systems. Several web
applications and security systems proactively tackle security risks arising from weak
passwords by requiring users to use a combination of several different types of char-
acters such as special characters and numerals and using password guessing tools
such as Hashcat and JtR to find weak passwords.

Secure systems requiring passwords for authentication are susceptible to guessing
attacks if security measures such as rate-limiting and salting are improperly imple-
mented, as in the case of SolarWinds Breach [2]. Hackers can also hash probable
passwords and search formatches and cracked hashes password hash database dumps
found online. Learning the password set distribution allows us to sample the least
probable password sequences and thus evade the aforementioned attacks instead of
relying on static strength evaluation rules implemented by most websites.

In the case of offline guessing attacks, where the password p has to be recovered
when the hash h is known, rainbow tables [3] can be used. Oechslin’s rainbow table
attack makes use of a reduction function R that performs a mapping between the
hash function H and the set of passwords P. Alternate calls of H and R are used to
generate a single chain. This method requires low disk storage space; however, it
suffers from false alarm where h is not in the generated chain even when extended
h matches with the endpoint of the chain. The password cracking performance of
rainbow tables also heavily depends on the reduction function R chosen.

Traditional password guessing tools such as Hashcat and JtR utilize two
approaches. A brute-force attack is the first solution, whereas a dictionary attack
and variations are the second.

Brute-force attacks focus on constructing a candidate a password generated by
combining several different types of characters while taking into consideration, the
minimum and maximum lengths of the password and the set of all legal characters.
The performance of such attacks has been greatly improved by optimizing the tools
to run on graphical processing units (GPU); however, large space of legal characters
and long passwords require an enormous amount of time and render such an approach
unusable.

Dictionary-based attacks make use of attack dictionaries for password guessing.
Previously disclosed password sets and a combination of words from the English
dictionary and numbers to generate password guesses. Tools such as Hashcat [4] and
JtR [5] utilize several mangling and concatenation rules to generate more candidate
password guesses and expand the existing dictionary. Hashcat provides several built-
in rulesets such as best64 which reasonably improves the performance of password
cracking. These rulesets amplify the existing dictionary by changing character cap-
italization, appending or prepending numbers and adding special characters to an
already existing password in the dictionary. However, such an attack is constrained
by the distribution of leaked passwords and the size of the dictionary. This method
also struggles with finding rulesets that improve the cracking performance since
analyzing statistical patterns of tens of millions of passwords is tedious.
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In this research, we suggest the use of excellent expressive power of neural net-
works to analyze existing statistical patterns in the leaked dataset and sample novel
sequences from the modeled distribution to generate password guesses. Approaches
that perform probabilistic analysis on the password set are also explored.

2 Background and Related Work

In this section, we describe other password guessing approaches that have been stud-
ied previously. The vulnerability of authentication systems to password guessing
attacks is extremely conditional upon the type of attack vector as well as the config-
uration of the system itself. Guessing attacks are rendered useless for systems that
lock the user out for a certain duration after a specific number of incorrect guessing
attempts.

2.1 Probabilistic Approaches

Markovmodelswere suggested byNarayanan et al. for password guessing suggesting
that phonetic similarity of words play an important role in the memorability of
passwords [6]. The Markov model estimates the likelihood of the next character
occurring by taking previous background characters into account. Given a prefix of
length (n − 1), an n-gramMarkovmodel predicts the likelihood of the nth character.
As a result, for any string c1, . . . , ct , probability estimation is done as follows:

P(c1, . . . , ct ) ≈ P(c1, . . . , cn−1) ·
t∏

i=n

P(ci |ci−n+1, . . . , ci−1) (1)

Narayanan et al. also proposed a hybrid algorithm that generated passwords that
matched the Markovian filter and are accepted by a finite automaton. However, find-
ing suitable regular expressions by analyzing the password set containing millions
of passwords is difficult. This work was subsequently improved by Deurmuth et
al. [7] by generating passwords in descending order of probability thus minimizing
password cracking time by trying the most probable guesses first.

Weir et al. [8] proposed probabilistic context-free grammars (PCFG) for gener-
ating password guesses. PCFGs treat passwords as having a certain grammatical
structure and a set of terminals that fit into those structures. Such methods generated
preterminal structures by substituting digit string and special string terminals into
base structures in order of decreasing probability. Furthermore, most probable can-
didate password guesses are enumerated first by substituting alpha string terminals
into preterminal structures sorted in descending order of probability. The probability
of the generated password is calculated by multiplying individual probability of the
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base structure, preterminal structure, and the substituted string. In the experiments,
PCFG-based password guessing mechanism outperformed JtR operating in wordlist
mode.

2.2 Deep Learning Approaches

The use of artificial neural networks to model the password set distribution was
proposed by Melicher et al. to gauge the strength of human-generated passwords.
FLA primarily aimed at evaluating a password’s strength and the number of guesses
needed to crack it on the client-side browser while keeping the model as small as
possible for achieving sub-second latency [9].

PassGAN [10] was developed by Hitaj et al. which makes use of improved train-
ing of Wasserstein Generative Adversarial Network (IWGAN) to generate password
samples with probability distribution pg that is close to the real password distribution
preal. Gulrajani et al. [11] proposed IWGAN and introduced gradient penalty as a
measure of enforcing 1-Lipschitz Continuity for stable training of WGAN [12]. The
goal of generator G is to transform the original input noise vector z into password
guesses using a series of residual blocks consisting of two 1D convolutions such that
the discriminator is unable to differentiate between genuine and counterfeit samples.
The discriminator network D aims to differentiate between the real passwords sam-
pled from the dataset as well as the counterfeit examples generated by the generator
network G and output a score estimating the realness of the generated password. The
objective function of GAN [13] is given as follows:

min
θG

max
θD

n∑

i=1

log f (xi ; θD) +
n∑

j=1

log (1 − f (g(z j ; θG); θD))) (2)

Further attempt to model the password set distribution using IWGAN was done
by Nam et al. in [14]. Here, both the generator and the discriminator were recurrent
neural networks. Nam et al. also experimented with a dual discriminator approach
yielding slightly better results.

3 System Design

We explored a wide set of parameters to improve the cracking performance and
approached password guessing as a sequence modeling task using long short-term
memory (LSTM) and gated recurrent unit (GRU) cells.
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3.1 Model Design

To avoid the recomputation of recurrent cell states of context characters while out-
putting the probabilities of the next character for passwords with common prefixes,
we use a shared layer architecture where the training and inference models both
share the same underlying dense and LSTM layers (see Fig. 2). This allows us to
train the model by requiring the entire password but to predict the probability of next
character in password sequence, only the previously computed states and last gen-
erated character are required. This reduces the amount of computation required for
sampling passwords with common prefixes. The training model performs a forward
pass over the network to generate the probability distribution over the token space
for the next character in the sequence and then performs a backward pass to update
weights of the shared layers based on the gradients obtained from loss calculation.
The inference model performs only forward passes to generate probabilities during
the password sampling process.

3.2 Model Prediction

Neural networks, like Markov models, are taught to anticipate the next character
in the password given the state vectors representing all preceding characters. The
network, given a sequence of characters, alsomodels the probability of an END token
denoting the end of the password. The generation of passwords starts by feeding the
model a START token after which the model outputs the probabilities of being the
first character over the entire token space. For example, the probability of password
‘pwd’ is calculated by using the start token (t) as a context and then question the
model for the probability of having ‘p’ as the first character, then the probability of
‘w’ as the second character after ‘p’, then the probability of ‘d’ as the third character
after ‘pw’ and finally the probability of entire password ‘pwd’ by questioning the
model for the probability of end token after ‘pwd’. Figure1 shows the password
sampling process.

Fig. 1 Password sampling
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Fig. 2 Shared layer architecture

4 Our Approach

4.1 Token Space

In this work, we focus on a character-level password generation model including
all characters, numerals, and special characters. To avoid straining the network by
modeling all the characters, as shown empirically by Melicher [9], we choose to
only model the probabilities of lowercase characters. Password guesses containing
uppercase characters can be generated by post-processing the generated password
to generate guesses consisting of both uppercase and lowercase characters based on
the relative frequency of occurrence.
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4.2 Model Architecture

We utilized the power of recurrent neural networks, which have been shown to
process sequential data whilemaintaining internal state information about previously
generated characters in the sequence. Recurrent neural network cells like long short-
termmemory [15] and gated recurrent units [16]whichmitigate the issue of vanishing
and exploding gradients and are excellent at generating text from the perspective of
character-level language models.

4.3 Teacher Forcing and Exposure Bias

In this work, we implement teacher-forcing to train the neural network while taking
into account both the internal memory state information and the previous timestep’s
ground truth context character. With this approach, the network can suffer from
exposure bias during inference where the model can produce substandard sequences
due to the propagation of errors. This happens because the network is trained to
output conditional probability for the next character in the sequence, based only on
the ground truth context character of the previous timestep and not on the generated
errors.

4.4 Password Guess Sampling

To generate guesses using the inference model from the learned password set dis-
tribution, we use two approaches. First, we sample all the passwords that have the
probability over a certain threshold. However, in this approach, the probability of
the entire password reduces quickly as we are multiplying numbers that are less than
one. This creates an undesirable effect where it prefers short passwords because of
the fewer number of characters. In the second approach, we perform length normal-
ization of the generated passwords and assign a score. This incentivizes the sampling
algorithm to generate longer sequences especially considering the lack of passwords
with a minimum of 16 characters in the Rockyou dataset. Passwords having a score
greater than the threshold are then sampled. The normalization constant α can be
tuned as per the performance of the sampling algorithm.

score = 1

Ty
α

Ty∑

t=1

log P(y<t>|START, y<1>, . . . , y<t−1>) (3)

Ty denotes the length of the password.
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5 Experimental Setup

5.1 Model Implementation

Our implementation makes use of the Keras Library with TensorFlow 2.3 [17] back-
end for training both the networks. The training models used three stacked recurrent
layers with 300 units followed by two densely connected layers with a total of
4,861,207 parameters. The training and sampling of passwords were done in Python
3.8. The tests were carried out on a computer running Ubuntu 20.04 LTS, a 6 core
AMD Ryzen 5 3500 CPU, 16GB of RAM, and an NVIDIA GeForce 2060 Super
extreme edition GPU with 8GB of VRAM.

5.2 Training and Testing Configuration

Rockyou Dataset To evaluate the performance of the LSTM and GRU networks and
generate candidate password guesses, we trained these models on sets of passwords
obtained from the Rockyou password dataset leak [18]. We believe this approach is
innocuous, even though the passwords might contain personal information since the
dataset is publicly available.

In this experiment,we selected all passwords of length less than or equal to 32 from
the Rockyou dataset (about 14 million passwords). Before training the model, as a
standard preprocessing step, all the unicode and special ASCII control and extended
ASCII characters were removed. Out of the total 14 million passwords, about 70%
(9,973,206 passwords) were used to train the LSTM and GRU networks. For eval-
uation purposes, we calculated the set difference between the training set and the
remaining 30% of the passwords (4,126,994 total passwords and 3,921,227 unique
passwords) resulting in 3,665,812 passwords that the models have not examined
during the training.

Candidate Password Sampling Configuration Once the models are trained, the
sampling algorithm generates password guesses with a score greater than the con-
figured threshold. The score threshold and alpha parameters for normalization are
mentioned in Table1. The generated passwords are then post-processed using the
steps mentioned in Token Space.

Table 1 Sampling algorithm configuration

Model Threshold α

LSTM −8.465 0.37

GRU −9.45 0.3275
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6 Evaluation

6.1 Evaluating Generated Passwords

To evaluate the performance of the models, we generated about 1.57 × 109 and
1.53 × 109 guesses using the LSTM and GRU model, respectively. Inspection of
the generated passwords shows that the model has learned to construct meaningful
candidate passwords containing names and a combination of names and numbers
such as name followed by 2 or 4 digits indicating the birth year of the user. Our results
show that neural networks exhibit exceptional password guessing performance for
long and complex passwords. For the evaluation of both the models, the entire testing
set was further partitioned into three sets based on the length (1 to 8, 9 to 15, and 16
to 32 characters). Figure3 highlights the relation between the number of password
guesses and the total number of passwords matches across all sets for both the
models. Our results show that the GRU model slightly outperformed the LSTM
model in the ≤8 character testing set with 56% matches as compared to the LSTM
model’s 50% matches out of the total 2,250,012 testing passwords. However, for the
remaining two sets (9–15 and 16–32) LSTM performs better with 34% and 25%
matches, respectively, as compared to the GRU model’s 32% and 15% out of the
total 1,345,062 and 70,738 passwords in 9–15 and 16–32 sets. The findings of the
evaluation are detailed in Table2.

Both the models generate novel sequences by combining words, numbers, and
specific frequently occurring substrings of passwords in the training set such as
‘love’ or ‘123’. For instance, the model generated ‘loveforever’, ‘love4ever’, and

Fig. 3 1–8, 9–15 and 16–32 characters cracking performance

Table 2 Guessing performance of models

Password sets ≤8 ≥9 and ≤15 ≥16 and ≤32 Total

GRU model 1,266,478 (56%) 433,656 (32%) 10,986 (15%) 1,711,120 (46%)

LSTM model 1,133,612 (50%) 468,565 (34%) 17,628 (25%) 1,619,805 (44%)

Testing set 2,250,012 1,345,062 70,738 3,665,812
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Table 3 Sample non-matched passwords

ricardoisthebest ihatemywife123 ashley1869

@ngelina idontlikemybabyboy 27/09/06

ilovemyprincess70 strawberrytinkerbell nokia700

assholeisthebomb christopher2007@yahoo.com samurai@123

ilove4everross teamomuchoasantonio 25aug2007

‘love4eva’, thus effectively capturing human password generation processes. This
enables themodels to investigate passwords in areaswhere conventional cutting-edge
rule-based tools cannot. According to our research, the number of cumulative pass-
word matches gradually increases with increasing guess attempts. Both the models
were able to match more than 40% of the≤8 category passwords at just 109 guesses.
For targeted password guessing approaches, tools such as common user password
profiler (CUPP) can be used to make informed guesses, using commonly seen pat-
terns, Personally Identifiable Information (PII) about the target, such as full name,
date of birth, and nickname.

6.2 Non-matched Password Guesses

Closer examination of sampled passwords that were absent in testing set leads us to
conclude that these passwords look appropriate for passwords generated by humans.
We also believe that, while these passwords did not match with the testing set,
they could still match with the passwords chosen by users on websites other than
Rockyou. For targeted guessing, the generated passwords can be utilized as templates
by replacing names and numbers in the guesses. Although carefully inspecting each
generated password for producing targeted guesses is a tedious process, Table3 lists
a small sample of non-matched passwords.

7 Conclusion

We presented two neural networks with LSTM and GRU cells in this paper to learn
the distribution of passwords chosen by humans using recently leaked password sets.
These models were able to generate passwords similar to humans by exploring a sig-
nificant portion of the password space without requiring any prerequisite knowledge
and analysis of the leaked password dataset. These models have password cracking
performance comparable to the Hashcat and JtR, which are cutting-edge password
guessing tools even at lower training times.



Modeling Human Tendencies for Password Guessing 257

Themodelswere evaluatedon theportions of the dataset that the networkswere not
trained on, thus determining how well the models were able to figure out how actual
passwords are distributed. Our findings reveal that the models were able to generate
human-like passwords and matched about 50% of the test set in just 109 guesses. The
learned distribution can also be used to determine the strength of passwords selected
by the user. Suggesting less probable and pronounceable passwords for users by
utilizing the learned patterns from leaked passwords remains a high potential research
area.

The ubiquitous nature of password-based authentication systems requires that
developers adopt secure programming practices and implement password security
measures such as two-factor authentication, salting, and limiting the number of incor-
rect password attempts.
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